Using Ecopath with Ecosim to explore nekton community response to freshwater diversion into a Louisiana estuary

Kim de Mutsert Ecosystem Modeling Workshop

March 12, 2012

Outline

- Background research question
- Building an Ecopath model of the estuarine ecosystem
- Using Ecosim and forcing functions to address the question
- Model outcomes
- Next steps: end-to-end modeling and Ecospace

The Caernarvon Freshwater Diversion

Ecosystem modeling: Ecopath with Ecosim

Widely used for construction of mass-balance trophic models of ecosystems

Simulates response of fish to fishing and environmental change:

accounts for ecological interactions

Ecosystem modeling: Ecopath with Ecosim

Has three main components:

- <u>Ecopath</u> a static snapshot of ecosystem trophic structure
- <u>Ecosim</u> a time dynamic simulation module
- <u>Ecospace</u> a spatial and temporal dynamic module

Modeling response to salinity changes

A new feature in Ecosim and Ecospace allows for fish (biomass) response to environmental forcing functions:

- Include species-specific response curve parameters to salinity
- Include time series of the salinity forcing function
- Temperature has been added to the software as well, and thereby the option to apply two forcing functions simultaneously
- Both can be modified to represent other environmental factors

List of species/groups in the model

gar sp.	gulf menhaden			
spotted seatrout	striped mullet			
red drum	bay anchovy (+ small forage fish)			
largemouth bass	blue crab			
sheepshead	penaeid shrimp (brown,white,pink)			
sunfish	zooplankton			
ladyfish	zoobenthos (+ grass shrimp)			
Atlantic croaker	phytoplankton			
spot	macro algae/SAV			
catfish sp.	benthic algae			
black drum	detritus			
Southern flounder				

The Breton Sound Ecopath model: output

Group name	Trophic level	biomass (g/ m²)	P/B	Q/B	EE	P/Q
juvenile Gar	3.147256	5.31E-05	2	9.649451	0.3336831	0.2072657
Gar	3.459231	0.0376	0.193	1.49	0	0.1295302
juvenile Seatrout	3.07791	0.5272942	3.7	6.441572	0.04098525	0.5743939
Spotted Seatrout	3.242222	1.88	0.7	1.6	0.000927416	0.4375
juvenile Red Drum	2.880879	0.2803999	2.2	4.86953	0.2484199	0.451789
Red Drum	3.075991	1.526	0.62	1.86	0.06495768	0.3333333
juvenile Largemouth Bass	2.7668	0.000209998	2	9.010589	0.8733456	0.2219611
Largemouth Bass	3.164393	0.0063	0.6	2.814	0.2964233	0.2132196
juvenile Sheepshead	2.4646	0.00356516	2	28.89982	0.8803409	0.06920458
Sheepshead	2.895	0.396	0.417	6.359	0.4075314	0.06557634
juvenile Sunfish	2.4	3.61E-05	2	12.27996	0.9183455	0.1628669
Sunfish	2.6065	0.0004	0.8	4.966	0.7156363	0.1610955
juvenile Ladyfish	3.138906	0.009840218	2.8	18.14661	0.9046535	0.1542988
Ladyfish	3.324245	0.0932	1.6	6	0.8068669	0.2666667
juvenile Croaker	2.912175	0.01361376	2	20.03493	0.9407493	0.09982565
Atlantic Croaker	2.9251	0.0454	1.5	10	0.7792511	0.15

Breton Sound Ecopath model

New: Ecosim can simulate nekton response to salinity changes

The effect of the salinity forcing function on fishes is a function of species-specific response curves

Output largemouth bass and spotted seatrout

Compare Ecosim runs with time series data

Nekton community Ecopath (start) and end of 3 Scenarios

Summary Ecopath with Ecosim simulations

- The salinity forcing function in EwE provides estuarine ecologists with an important modeling tool
- Current simulations:
- No ecologically or recreationally important nekton species decline, some even increase in biomass
- Salinity affects the spatial distribution of species within the estuary
- Small forage species increase in low salinity due to reduced predation pressure

Should we include river diversions in coastal restoration?

It should not be discouraged because of presumed negative impacts on fish and shrimp

Next steps: Forecast effect of diversion flow scenarios

- How will nekton community structure change when the diversion is open at full capacity/ is closed/ is managed with a particular flow regime?
- How will this scenario affect the biomass of a particular species of interest?
- In combination with Ecospace:
- How will scenario x affect the distribution of a species of interest?
- What area of the estuary will be suitable habitat for a species of interest when the diversion is managed with flow scenario x?

Breton Sound ADH Model

Scenario: Caernarvon diversion planned flow regime

Gaurav Savant, ERDC

The Caernarvon Freshwater Diversion

First output: 1-year salinity results in same three areas

MDS plot community structures of the 3 scenarios with and without 1 year ADH salinities

Compare ADH + EwE output with actual estuarine nekton community under similar salinity conditions as ADH scenario (2006-2008)

Ecospace model

- Ecospace replicates the foodweb structure in each model grid cell
- 1x1 km cells, 21x36 km grid
- Cells have habitat 'type' (dense marsh, open marsh, open water), species use one or more types
- Cells have time dynamic salinity
- Nekton spatial movement dependent on cell habitat type and salinity (each species can decide to stay or move)

Model area

Future directions

Interface (v. 5.1)

Improve habitat map (Bathymetry/GIS)

Savant, ERDC

Final notes

 This research is an example of a very 'ecological' use of the EwE modeling software

 The salinity forcing function adds a useful tool to the EwE software for estuarine ecologists

 The advantage of addressing these questions with an ecosystem model is that trophic interactions and indirect effects can be revealed

Community structure Scenario 1 before and after ADH salinity run Species explaining 90% of dissimilarity

Community structure Scenario 2 before and after ADH salinity run Species explaining 90% of dissimilarity

Community structure Scenario 3 before and after ADH salinity run Species explaining 90% of dissimilarity

Community structure whole estuary before and after ADH salinity run Species explaining 90% of dissimilarity

